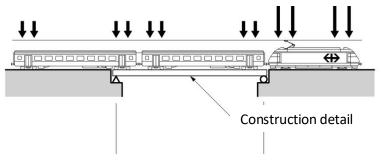


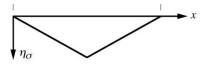
Steel structures, selected chapters

Fatigue: variable amplitude loading (ref. TGC 10 section 13.5)

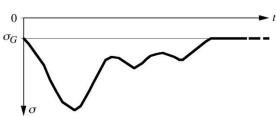
Part 4

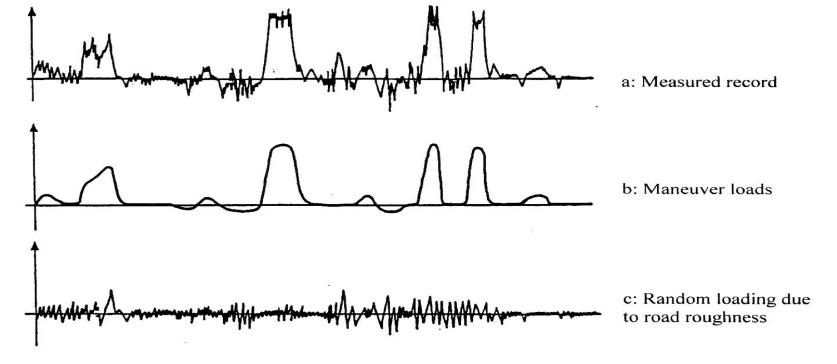


CONTENTS

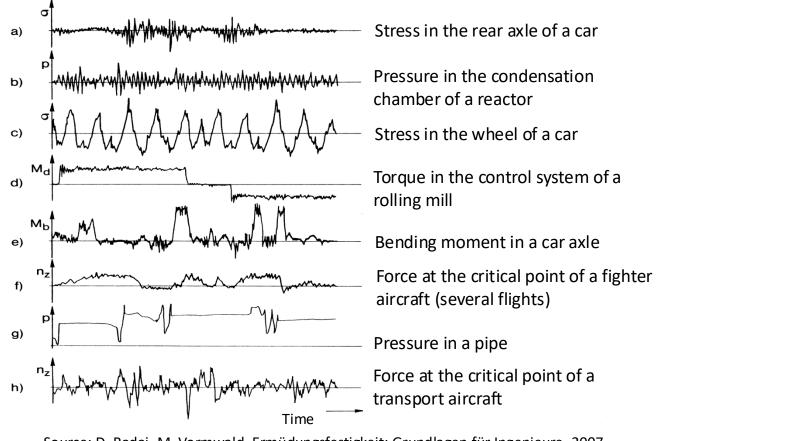

- Variable amplitude loading
- Simplification of a VA spectrum, cumulative damage law
- Variable amplitude fatigue verification formats
- Road traffic in Switzerland
- Simplified method, damage equivalence factor λ determining length (and shape of influence line)

Variable amplitude loading


Loading model and static system


Influence line (stress in the considered detail)

Stress history

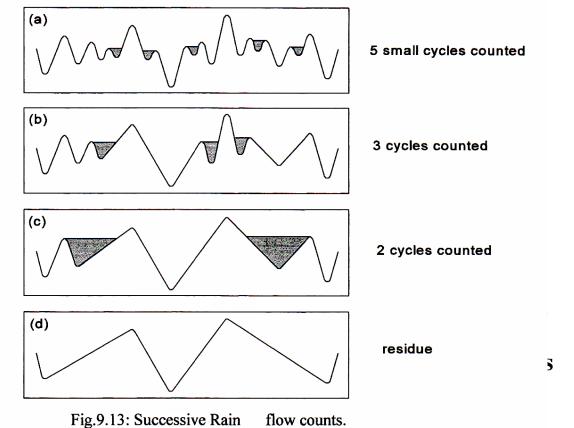


Example of variable amplitude loading (motorbike steering component)

Source: J. Schijve, Fatigue of structures and materials, 2001

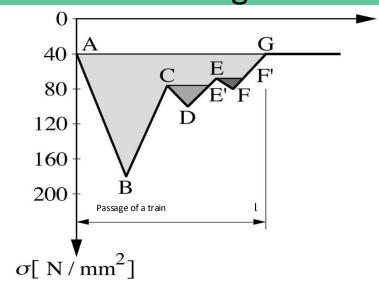
Examples of variable amplitude loads

Source: D. Radaj, M. Vormwald, Ermüdungsfestigkeit: Grundlagen für Ingenieure, 2007


CONTENTS

- Variable amplitude loading
- Simplification of a VA spectrum, cumulative damage law
- Variable amplitude fatigue verification formats
- Road traffic in Switzerland
- Simplified method, damage equivalence factor λ determining length (and shape of influence line)

Simplification of a VA spectrum, cumulative damage law


- 1. Reduce the load into a series of constant amplitude cycles using a cycle counting method
- 2. Create a stress range histogram from the spectrum obtained under 1

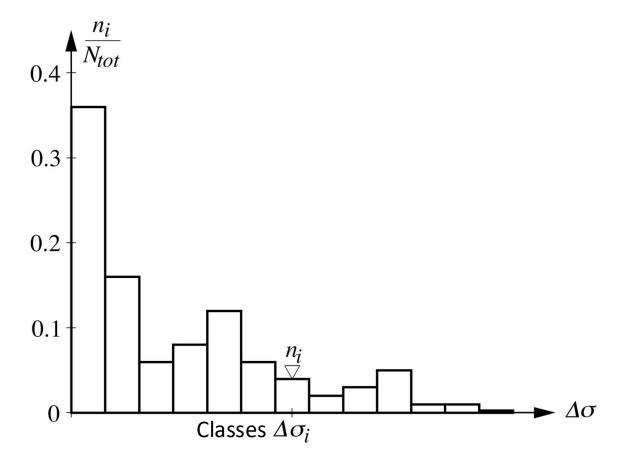
Cycle counting: idea of the reservoir (or Rainflow) method

Source: J. Schijve, Fatigue of structures and materials, 2001

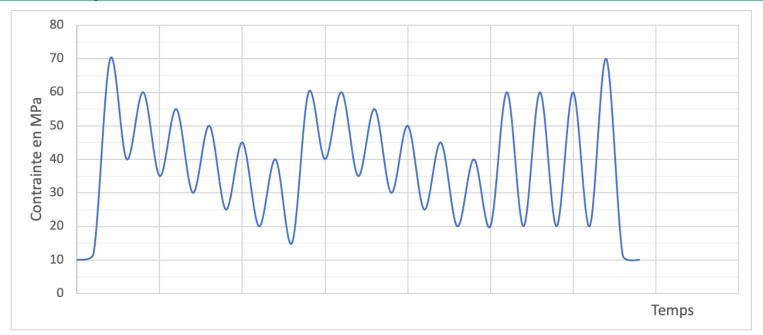
Reservoir counting method

niveau-pointe	$\Delta\sigma[{ m N/mm}^2]$
$\overline{\mathrm{AG}} ext{-}\mathrm{B}$	140
$\overline{\text{CE}}$ '-D	24
ĒF'-F	12

Or the equivalent, Rainflow method (for programming)

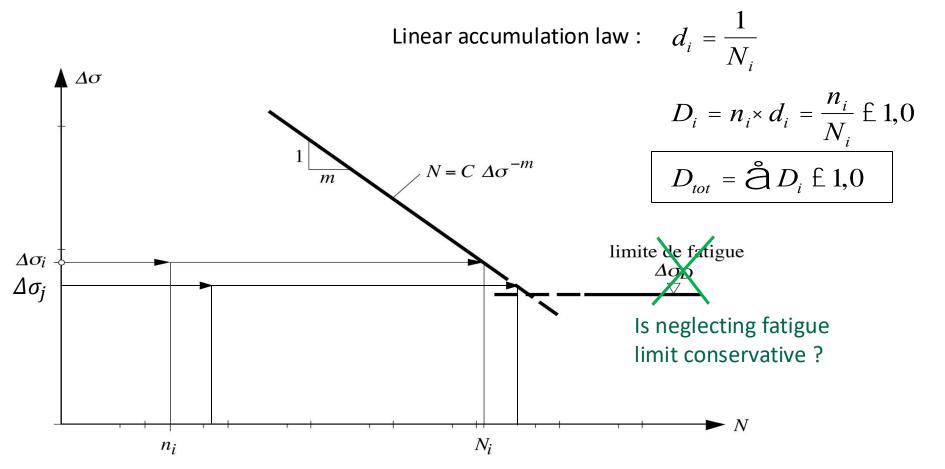

rainflow(x) returns cycle counts for the load time history, x

1/2 cycle 140 MPa
1/2 cycle 24 MPa
1/2 cycle 12 MPa


1/2 cycle 12 MPa 1/2 cycle 140 MPa

½ cycle 24 MPa

Example of results – expressed as an histogram


Example of use of the reservoir method

Simplification of a VA spectrum, cumulative damage law

- 1. Reduce the load into a series of constant amplitude cycles using a cycle counting method
- 2. Create a stress range histogram from the spectrum obtained under 1
- 3. Using the appropriate resistance curve, calculate, for each stress range level, the damage value due to the number of cycles at that level using a cumulative law (Miner in general).
- 4.

Calculation of individual damage for n_i , $\Delta \sigma_i$

Calculation of damage due to n_i cycles of $\Delta \sigma_i$ (at S-N curve design level)

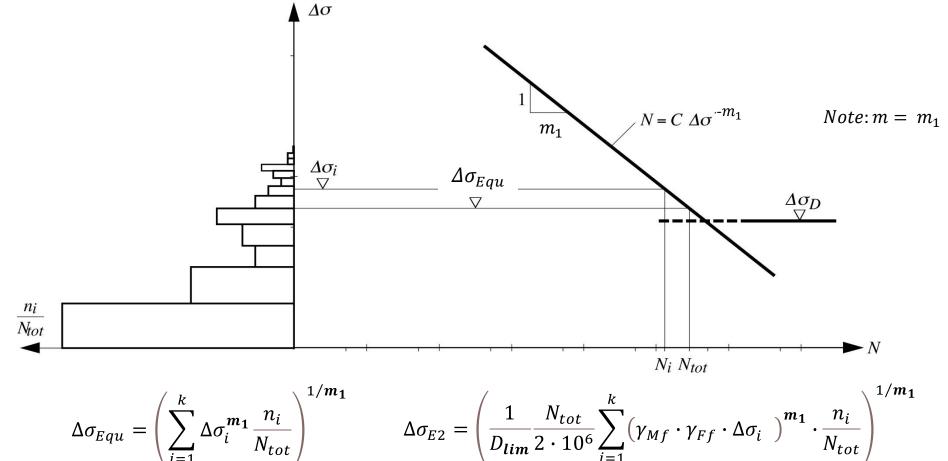
$$D_i = \frac{n_i}{N_i} \qquad \qquad N_i = C_j \cdot \left(g_{Ff} \cdot \mathsf{D}S_i\right)^{-m_j}$$

For part of the curve with m_j (= 3, or 5)

$$D_i = \frac{n_i}{N_i} = \frac{n_i}{C_i \cdot (g_{Ff} DS_i)^{-m_j}}$$

And expression for C_1 from the resistance curve expressed at 2 million cycles:

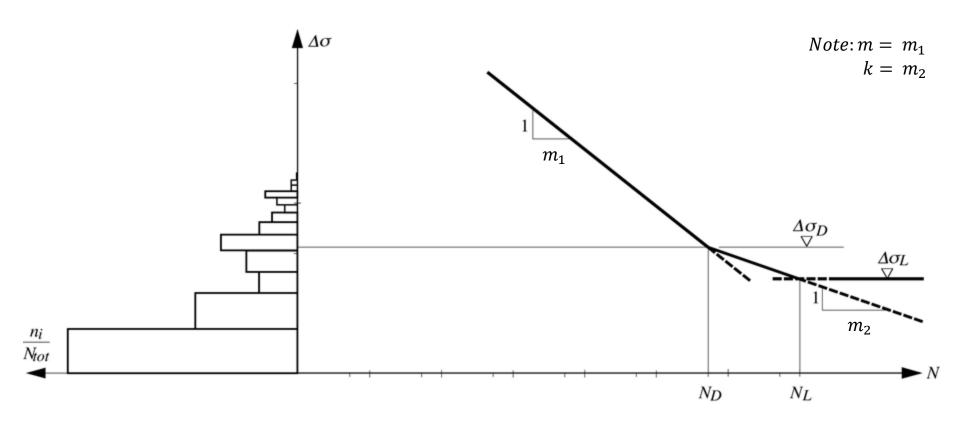
$$C_1 = 2 \cdot 10^6 \cdot \left(D s_C / g_{Mf} \right)^{m_1}$$

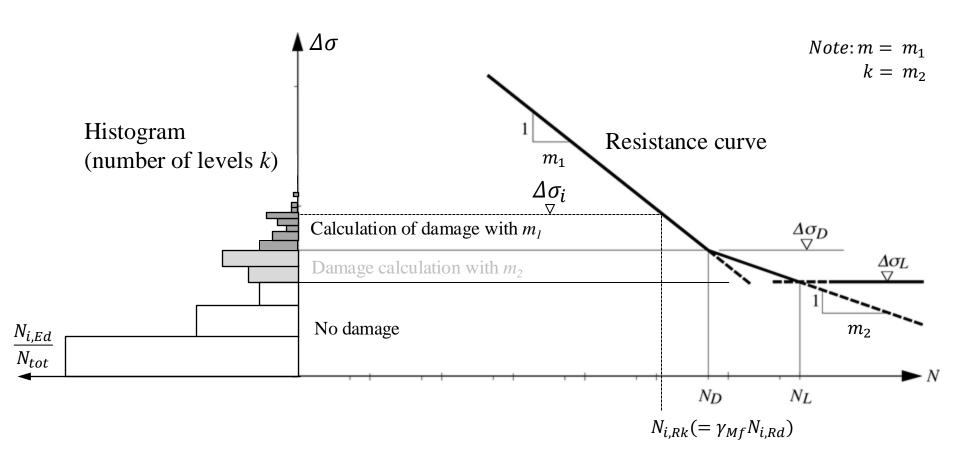

 $C_1 = 2 \cdot 10^{\circ} \cdot (DS_C/g_{Mf})^{-1}$ And for a level $\Delta \sigma_i < \Delta \sigma_D/\gamma_{Mf}$ (located within 2nd part of the curve):

And for a level
$$\Delta \sigma_i < \Delta C_2 = N_D \cdot \left(DS_D / g_{Mf} \right)^{m_2}$$

Simplification of a VA spectrum, cumulative damage law

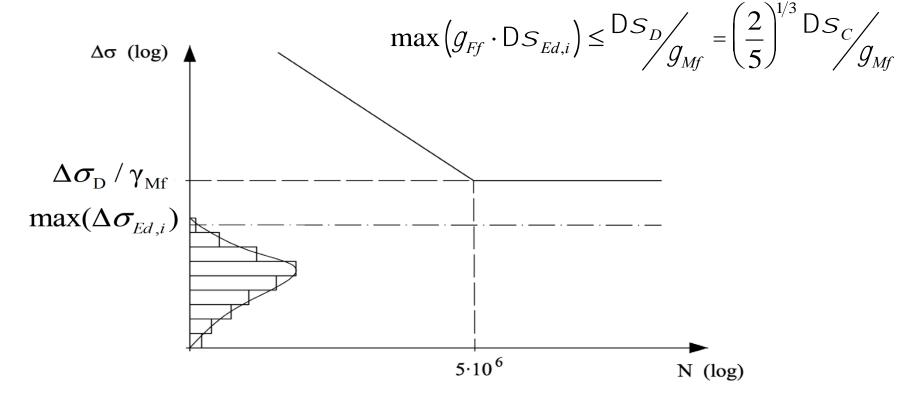
- 1. Reduce the load into a series of constant amplitude cycles using a cycle counting method
- 2. Create a stress range histogram from the spectrum obtained under 1
- 3. Using the appropriate resistance curve, calculate, for each stress range level, the damage value due to the number of cycles at that level using a cumulative law (Miner in general).
- 4. Combine the individual damages to obtain the total damage and carry out the verification


Histogram $\Delta \sigma_i$ and fatigue curve


CIVIL526 – Steel structures, selected chapters

Prof. A. Nussbaumer

Histogram $\Delta \sigma_i$ and fatigue curve



Histogram $\Delta \sigma_i$ and fatigue curve

Possible: Verification using the fatigue limit

Max of the histogram: $\max \mathsf{DS}_{Ed,i}$

CONTENTS

- Variable amplitude loading
- Simplification of a VA spectrum, cumulative damage law
- Variable amplitude fatigue verification formats
- Road traffic in Switzerland
- Simplified method, damage equivalence factor λ determining length (and shape of influence line)

Summary: Verification formats

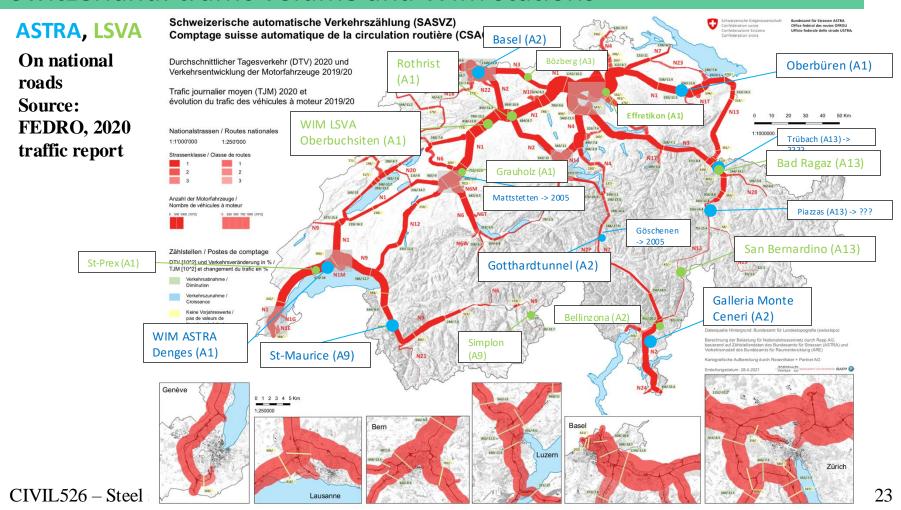
$$\max \left(g_{Ff} \cdot \mathsf{D} S_{Ed,i} \right) \leq \frac{\mathsf{D} S_D}{g_{Mf}}$$

$$\gamma_{Ff} \cdot \Delta \sigma_{E2} \leq \Delta \sigma_C / \gamma_{Mf}$$

$$D_{tot} = \frac{a}{N_i} \frac{n_i}{N_i} \in D_{\lim} \quad (=1.0)$$

$$/_{\max} \cdot \mathsf{DS}\left(g_{Ff}Q_{k}\right) \leq \mathsf{DS}_{C}/g_{Mf}$$

4. using damage equivalence factors (N finite or infinite)


CIVIL526 – Steel structures, selected chapters

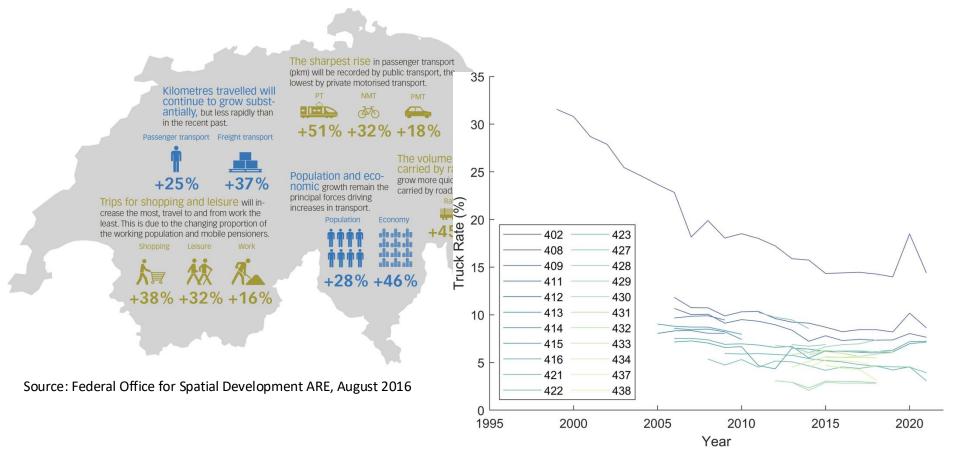
ors
$$/\cdot DS(g_{Ff}Q_k) \leq DS_C/g_{Mf}$$

$$/_{\max} \cdot \mathsf{DS}($$

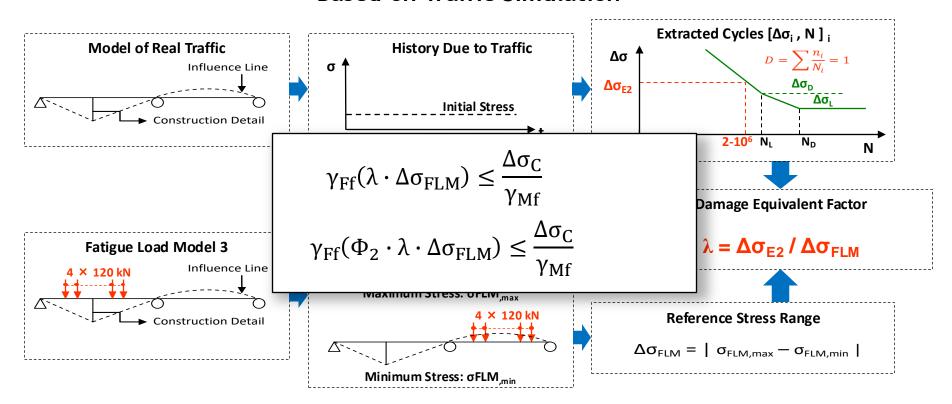
Prof. A. Nussbaumer

Switzerland: traffic volume and WIM stations

Available WIM data


Data from 27 WIM stations at 13 sites

Prof. A. Nussbaumer


Switerland: transport outlook 2040

CIVIL526 – Steel structures, selected chapters

Prof. A. Nussbaumer

Evaluation of Eurocode Damage Equivalent Factor Based on Traffic Simulation

CONTENTS

- Variable amplitude loading
- Simplification of a VA spectrum, cumulative damage law
- Variable amplitude fatigue verification formats
- Road traffic in Switzerland
- Simplified method, damage equivalence factor λ determining length (and shape of influence line)

Simplified fatigue verification format: damage equivalent factor concept

$$\Delta \sigma_{E2} = \frac{\lambda}{\lambda} \Delta \sigma(Q_k)$$

2 × 270 kN

 λ depends on the fatigue load model (SIA or FLM3)

• Same format for $\Delta \tau$, same λ $\gamma_{Ff} \cdot \Delta \tau_{E2} \leq \Delta \tau_C / \gamma_{Mf}$

EN 1993-2 and SIA 263: 2013: Partial damage equivalent factors

$$/ = /_{1} \times /_{2} \times /_{3} \times /_{4} + /_{max}$$

With:

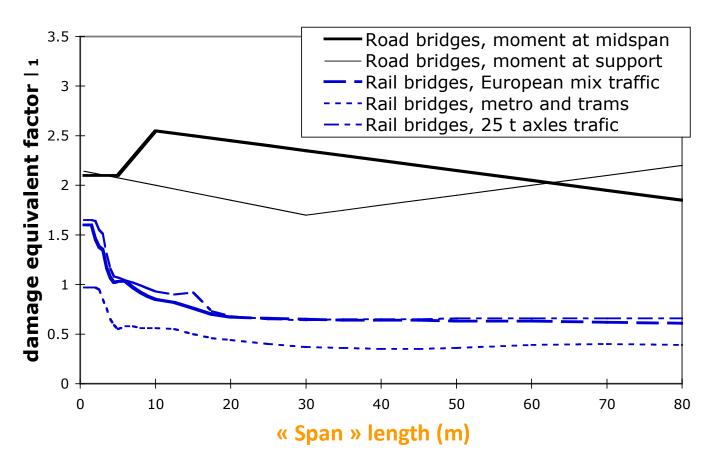
effect of traffic as a function of the determining length, or of

 λ_1

determining influence surface effect of traffic volume, in weight and nb, if different then N_0 from code

 λ_2 λ_3

effect of length of service, if different then code (for cst traffic)


 λ_4

effect of heavy traffic on other lanes (if several lanes)

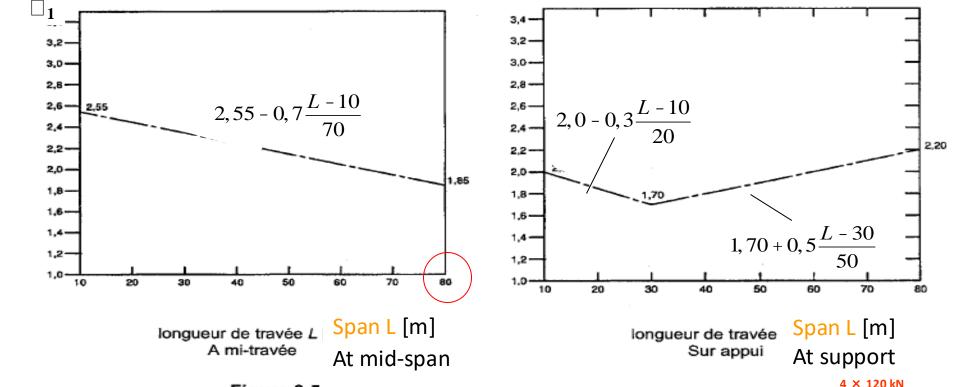
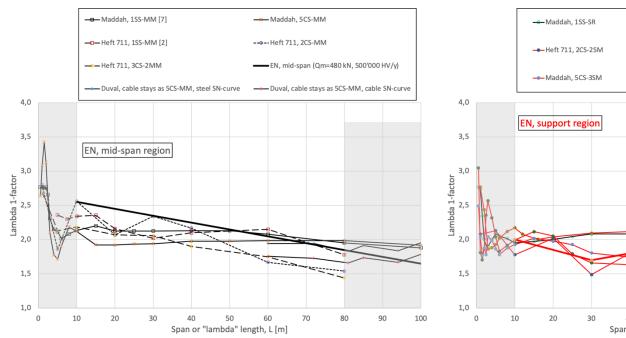
 λ_{max}

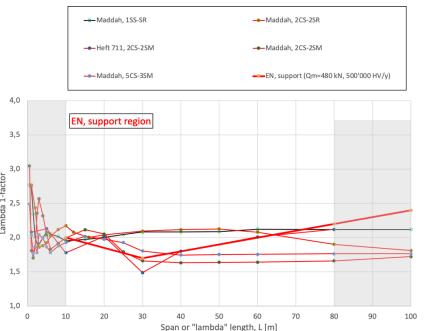
maximum value, taking into account the fatigue limit (according to λ of the determining length)

Damage equivalent factor λ_1 (EN1993-2)

Prof. A. Nussbaumer

Damage equivalent factor λ_1 (EN1993-2)


Figure 9.5 — λ_1 for bending moments in road bridges

 $N_0 = 0.5 \cdot 10^6 \text{ trucks}$

‡‡---**‡**‡

Comparison between λ_1 curves and simulations

Damage equivalent factor λ_{max} (EN1993-2)

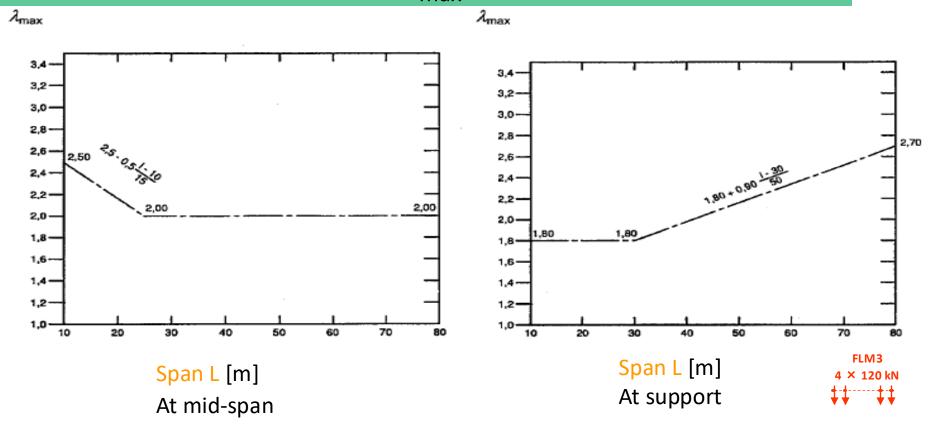


Figure 9.6 — λ_{max} for bending moments in road bridges

Partial fatigue equivalent factors λ_2 and λ_3

Stress range verification:

$$\lambda \cdot \Delta \sigma_{Ed} \leq \frac{\Delta \sigma_C}{\gamma_{Mf}}$$

With
$$N \cdot \Delta \sigma^m = cte$$

 $\lambda \propto \Delta \sigma : N^{1/m}$ We have the following proportionalities

And expressions for lambda partial factors:

 $I_{2} = \frac{Q_{m} \mathop{\mathcal{C}}_{0}^{\mathfrak{A}} \frac{N_{obs}}{N_{o} \mathop{\mathcal{O}}_{0}^{\otimes l}} \mathop{\dot{O}}_{0}^{l/m_{2}}}{Q_{m} = \text{average weight of heavy vehicles on slow lane}}$ $I_{2} = \frac{Q_{m} \mathop{\mathcal{C}}_{0}^{\mathfrak{A}} \frac{N_{obs}}{N_{o} \mathop{\mathcal{O}}_{0}^{\otimes l/m_{2}}}}{N_{o} \mathop{\mathcal{O}}_{0}^{\otimes l/m_{2}}} \qquad m_{2} = 5 \text{ (steel, SIA 263)}$ $Q_{m} = \text{average weight of heavy vehicles on slow lane}$

$$V_0 = 0$$
 $N_0 = 0$
 $N_0 = 0$

 T_{Id} = expected service life (in years)

$$m_2 = 5$$
 (steel, SIA 263)
 $Q_m = \text{average weight of heavy vehicles on slow lane}$
 $Q_0 = 480 \text{ kN (reference weight)}$
 $N_0 = 0.5 \cdot 10^6 \text{ load cycles on the slow lane}$
With:
$$Q_m = {}^{\alpha} \stackrel{\circ}{\bigcirc} n_i Q_i^{m_2} \stackrel{\circ}{\bigcirc}^{1/m_2}$$
 $\stackrel{\circ}{\bigcirc} n_i \stackrel{\circ}{\bigcirc} \stackrel{\circ}{\bigcirc} n_i \stackrel{\circ}{\bigcirc}$

Partial fatigue correction factor λ_A

For road bridges:

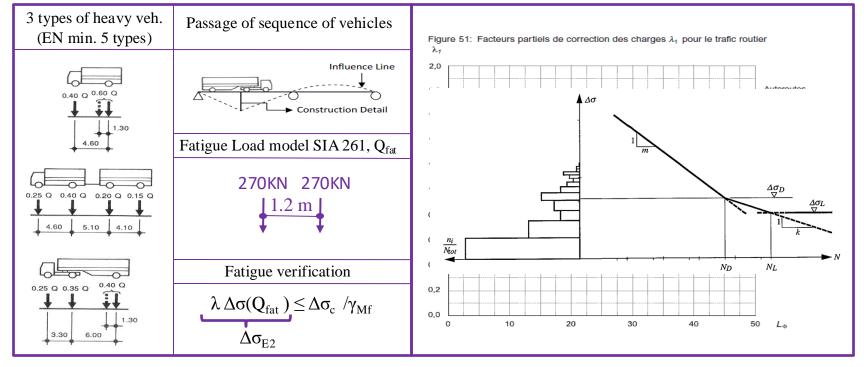
$$I_{4} = \left[1 + \frac{N_{2}}{N_{1}} \left(\frac{h_{2}Q_{m2}}{h_{1}Q_{m1}}\right)^{m_{2}} + \frac{N_{3}}{N_{1}} \left(\frac{h_{3}Q_{m3}}{h_{1}Q_{m1}}\right)^{m_{2}} + \dots + \frac{N_{k}}{N_{1}} \left(\frac{h_{k}Q_{mk}}{h_{1}Q_{m1}}\right)^{m_{2}}\right]^{m_{2}} \ge 1,0$$
With:

k nb of lanes carrying heavy traffic

 N_i nb of heavy vehicles per year on lane j

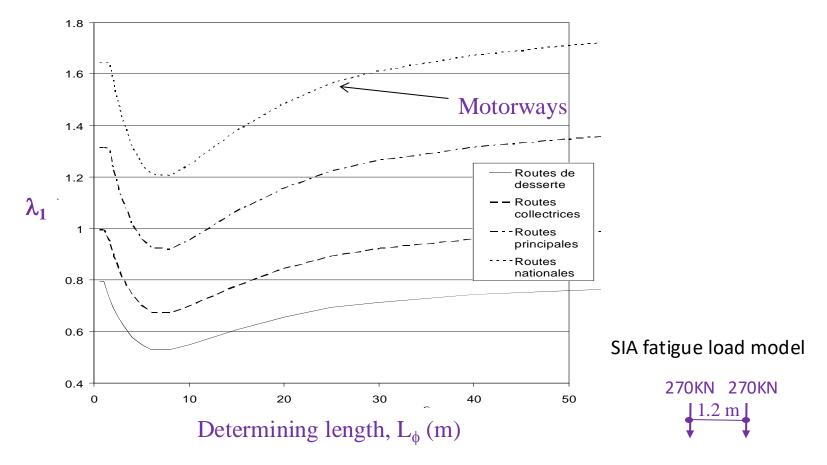
 Q_{mj} average weight of heavy vehicles on lane j (note: $Q_{ml} = Q_m$)

 η_i value of the transverse distribution line at the centre of track j which produces the stress range, with a positive sign


For railway bridges:

$$I_{4} = \left(n + \left[1 - n\right] \left[a^{m_{2}} + \left(1 - a\right)^{m_{2}}\right]\right)^{1/m_{2}} \le 1,0$$

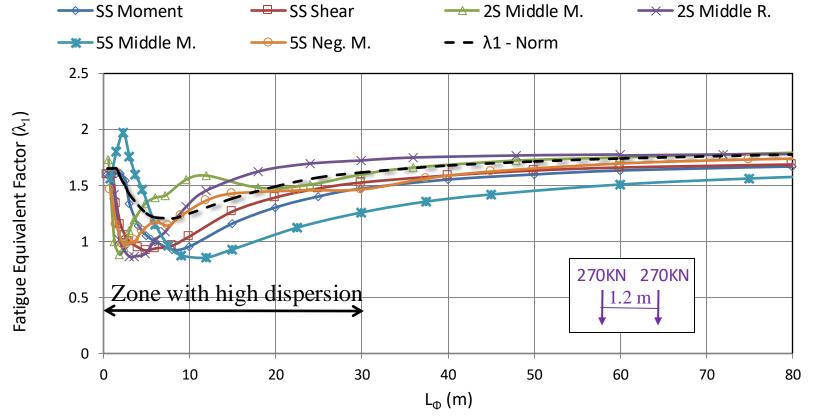
$$a = \Delta \sigma_{1} / \Delta \sigma_{1+2}$$


n portion of traffic together (waiting or crossing) on the bridge, by default 12%

SIA 261/263: calibration assumptions λ_1 for road bridges

Note: factor λ_1 given for heavy traffic per year and slow lane. E.g. for <u>Swiss</u> national roads (motorways), 1'400'000 vehicles/year/slow lane (in Europe, Cat. 1 = 2 million).

SIA 263: damage equivalent factor λ_1

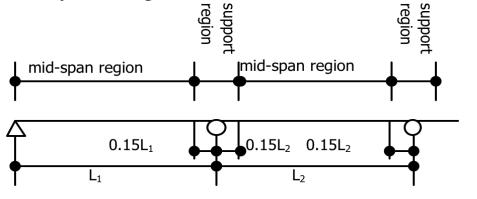

CIVIL526 – Steel structures, selected chapters

Prof. A. Nussbaumer

3

Dispersion on λ_1 depending on the static system,

Determining length


CIVIL526 – Steel structures, selected chapters

Prof. A. Nussbaumer

EN1993-2 and SIA261, Annex F: calculation of determining length (code/FLM dependent, can be fct of influence line)

Frank was a 1/2 of Complete 1's a second of the contraction of the con

- For stresses resulting from bending moments:
- For a simply supported span, span L_i
- For continuous spans in mid-span regions, span length L_i of span under consideration
- For continuous spans in support regions, mean of 2 adjacent spans L_i and L_j to that support
- For cross-girders supporting stringers (or rail bearers), sum of 2 adjacent spans of stringers (rail bearers) $L_i + L_j$ carried by cross-girder
- Definition of regions:

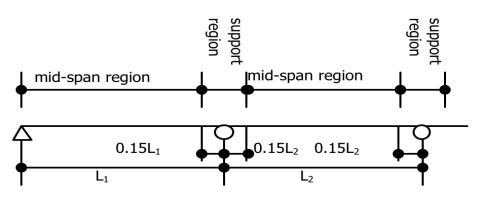
EN1993-2 and SIA: calculation of determining length

For stresses resulting from bending moments:

- ..
- For a deck plate or slab supported only by transverse beams or cross-ribs (no longitudinal members), the length of the influence line used to calculate the deflection of the plate, ignoring any part that indicates upward deflection. The same applies to transverse beams, cross-ribs, themselves. In rail bridges, the stiffness of the rails on the load distribution must be considered. For transverse beams, cross-ribs, spaced not more than 750 mm apart, this may be taken as 2 × cross-member spacing + 3 m

Cross-member's/

influence line

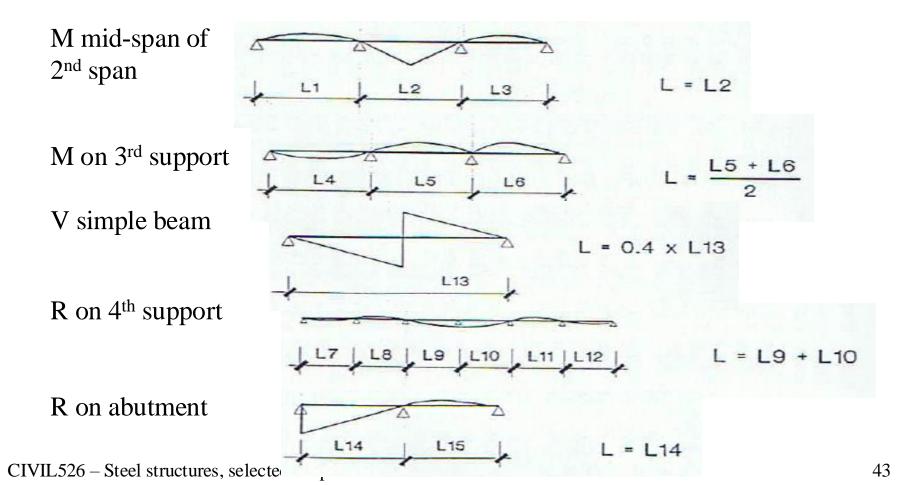

EN1993-2 and SIA: calculation of determining length

For shear for simply supported and continuous spans:

- For support regions, span L_i with section under consideration
- For mid-span regions, span of $0.4 \cdot L_i$ with section under consideration For reactions:
- For end support, span under consideration L_i
- For intermediate supports, sum of 2 adjacent spans $L_i + L_j$

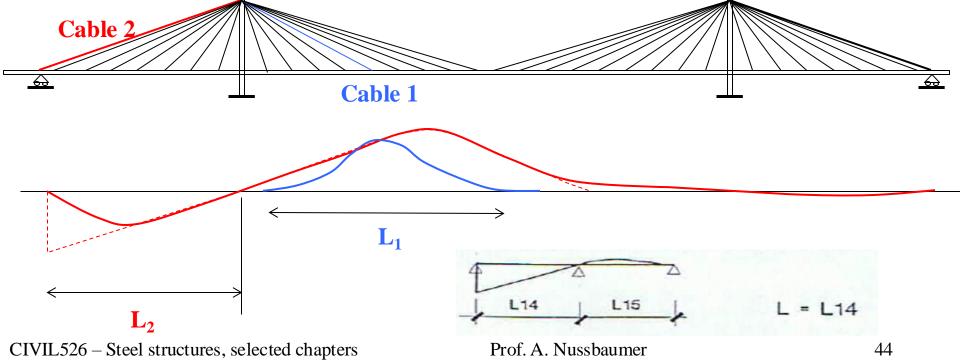
Arch bridges:

- For hangers, $2 \times \text{length of hanger under consideration}$
- For arch, ½ span

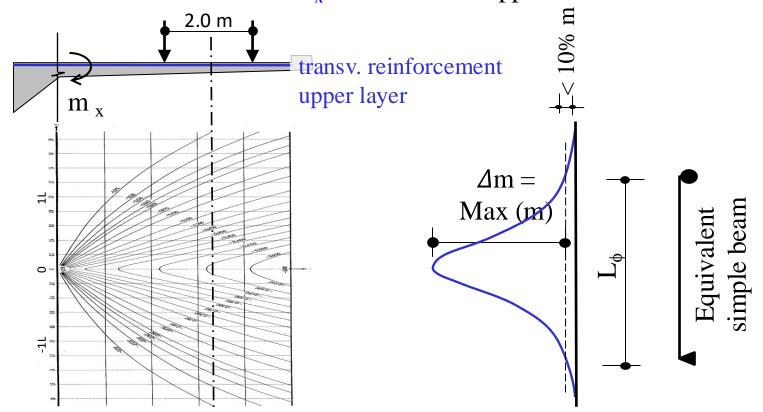


EN1993-2 and SIA: calculation of determining length

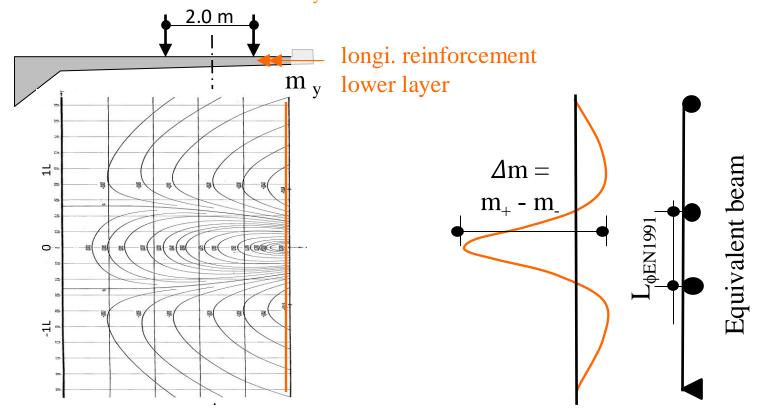
Untreated cases:


- Important, even if approximate, respect the shape of the Influence Line (one, two, etc. bumps, of same sign or not)
- Determine I.L. for each element/internal force
- If possible, analogy with I.L. of a simple beam to fix the determining length
- For railway bridges, if there are two or more I.L. zones, safer to use the shortest influence length.

Examples of calculation of determining length


Examples of calculation by analogy of determining length

- Axial force on cable-stayed bridge cable
- By analogy, ressembles a support reaction
- Lambda value taken from graph: support region


Calculation by analogy of determining length L_{ϕ} , bridge slab

Area of influence moment m_x on cantilever support

Calculation by analogy of determining length L_{ϕ} , bridge slab

Area of influence moment m_v end of cantilever

Resistance factor γ_{Mf} (current EN 1993-1-9 and SIA)

- Not a single value
- Based on possibility to perform visual inspections (values may be adapted wrt inspection intervals and methods)
- Prerequisite, choice of steel quality according to EN 1993-1-10

 Redundancy taken into account within both damage tolerant concept and consequences of failure

consequences of famare	Consequences of failure			
	Low	Important		
Inspection and repair: Possible ←→ damage tolerant concept	1.00	1.15		
Not possible ←→ safe life concept	1.15	1.35		

Resistance factor γ_{Mf} (NEW EN 1993-1-9: 2027)

- Still a proposition, not yet voted by CEN
- Explicit link between partial factor values and reliability requirements:
 - Low consequence
 ⇔ Class of Consequences CC1 according to EN 1990
 - Medium consequence ⇔ CC2
 - − High consequence ⇔ CC3

Table 5.1 (NDP) — Recommended values of the partial factors for fatigue resistance $\gamma_{\rm Mf}$

Design sousent	Consequence of failure			
Design concept	Low consequence	Medium consequence	High consequence	
Safe life	1,15	1,25	1,35	
Damage tolerant	1,00	1,15	1,25	

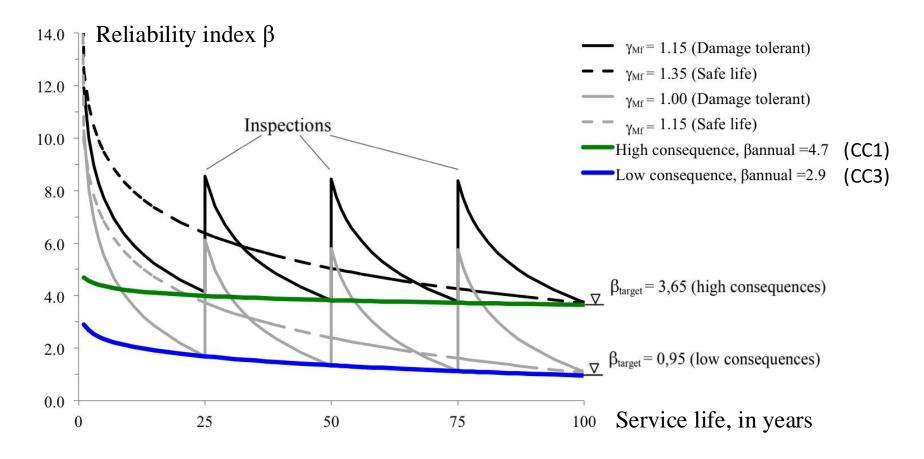
Design concepts requirements

Select appropriate constructional details, materials and stress levels to ensure sufficient reliability level.

<u>For safe life concept</u>: at end of design service life (no need for inspections). To apply where local formation of cracks in one constructional detail could rapidly lead to failure of a structure or one of its parts.

Examples: single anchor cable, single bolt connection, some details in case of simple spans twin-beam systems, etc.

Design concepts requirements


Select appropriate constructional details, materials and stress levels to ensure sufficient reliability level.

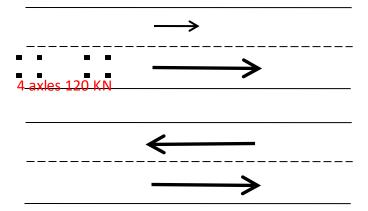
<u>For damage tolerance concept</u>: at end of each in-service inspection interval, so that in event of formation of cracks, one or all of following safety mechanisms are ensured:

- low propagation rates and easily detectablecracks prior to failure
- multiple load paths
- crack-arresting constructional details prevent progressive damage.

Examples: details on multi-beams systems, twin-beam details of continuous beam systems, slab reinforcement (because of the large number of rebars), closely spaced hangers, etc.

Evolution of β according to choice of verification method

APPENDICES


Eurocodes in relation to fatigue

Lui ocodes ili Telatioli to Tatigue					
AT	Title	Fatigue sections			
EN 1992-1-1	Concrete, General rules and buildings	§2 bases, §3 steels, §6.8 checks, Appendix C properties			
EN 1992-2	Concrete bridges	§2 bases, §6.8 checks, appendix NN lambda factors			
EN 1993-1-1	Steel, General rules and buildings	§2 bases, §4 durability			
EN 1993-1-9	Fatigue	All			
EN 1993-1-10	Choice of steel grades	All			
EN 1993-1-11	Calculation of cable structures or tension elements	§2 bases, §7.2 stress limitation, §9 checks and details, appendix A tests			
EN 1993-2	Steel bridges	§2 bases, §7.4 web breathing, §9 checks and lambda factors, appendix C constructive rules, details			
EN 1993-6	Cranes	§2 bases, §7.4 web breathing, §9 checks and lambda factors			
EN 1994-1-1	Mixed, General rules and buildings	§6.8 checks.			
EN 1994-2	Mixed bridges	§6.8 checks and factors, Appendix C			

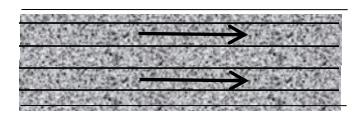
Warning: different principles between fatigue load models

Road bridges:

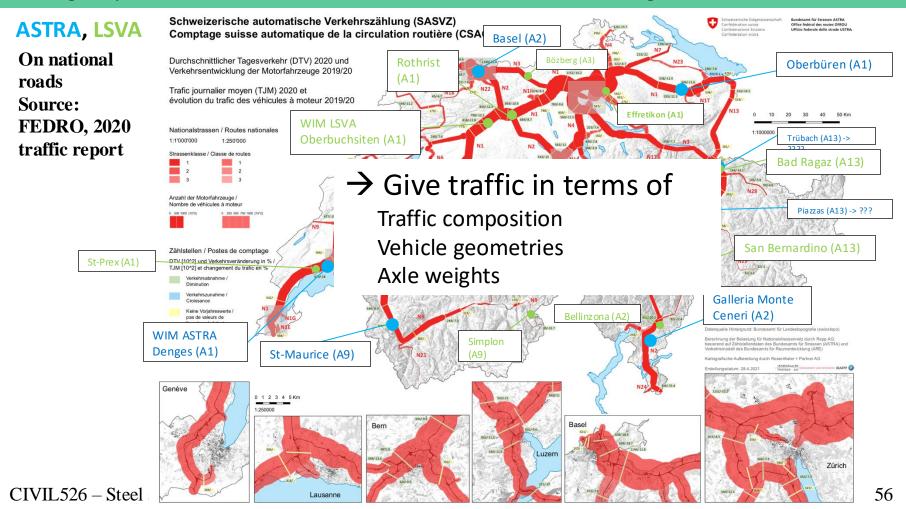
- Traffic, volume, data per year and slow lane
- <u>Single lane</u> load model
- Heavy vehicles mostly on the right (= slow) lane
- Bidirectional case: two slow lanes, probability of crossing? Considered to have a negligible effect
 - May be revised (c = calibrated crossing factor in fct of road category):

Possible new formulation taking into account crossings (2 lanes):

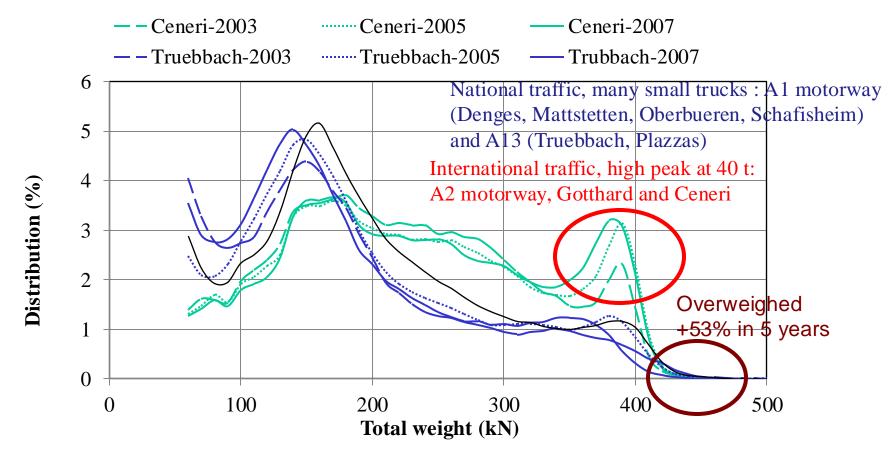
$$\lambda_4 = \left[(1-c) + \left(\frac{N_2}{N_1} - c \right) \left(\frac{\eta_2 Q_{m2}}{\eta_1 Q_{m1}} \right)^5 + c \left(1 + \frac{\eta_2 Q_{m2}}{\eta_1 Q_{m1}} \right)^5 \right]^{1/5}$$


Warning: different principles between fatigue load models

Road bridges:


- Traffic, volume, data per year and slow lane
- <u>Single lane</u> load model
- Heavy vehicles mostly on the right (= slow) lane
- Bidirectional case: two slow lanes, probability of crossing? Considered to have a negligible effect

Rail bridges:

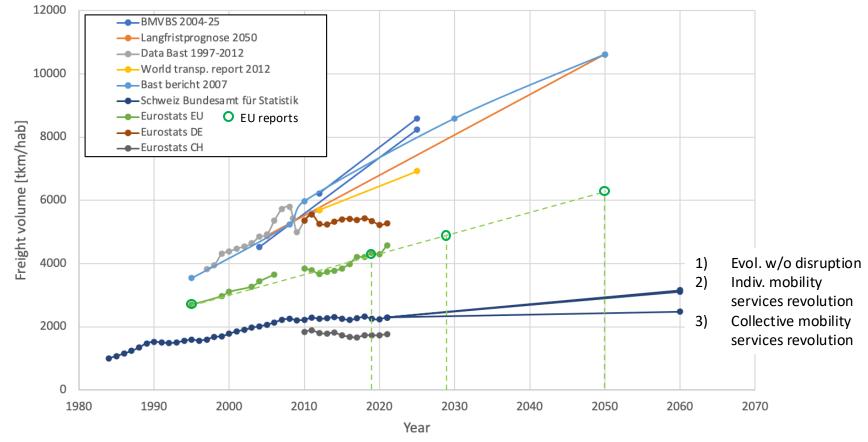

- Traffic, volume, given in millions of tonnes per year and track
- Two track load model
- Trains can often be on the bridge at the same time (close to stations, cannot put timetable constraints to avoid it)
- Unidirectional and bidirectional cases very similar (trains are long), same crossing probability

Damage equivalent factor calibration: based on Swiss traffic, Weigh-in-Motion stations

Damage equivalent factor calibration. Parameters: Histograms of total vehicle weights

CIVIL526 – Steel structures, selected chapters

Prof. A. Nussbaumer


Damage equivalent factor calibration. Parameters: future traffic evolution assumption

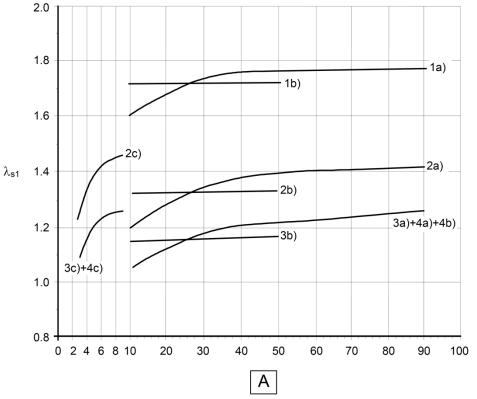
- Main basis:
 - Past 30 years
 - ASTRA and Federal Office for Spatial Development (ARE) Sources: INFRAS AG (2020), Verkehr der Zukunft 2060: Synthesebericht, SVI 1685 ARE (2016), Transport Perspectives 2040, Doc. ASTRA 82001 (2024)
- In EU various trends and assumptions between countries
- In tonnage, 2010-40: +37%, corr. to 1% annual (both rail and road)
- 3 scenarios for the roads: +8% (mobility revolution) to +37% (evolution)
- AADT growth 1.4% to 1.8%
- ADTT growth 0.35 to 0.4 %

ADTT (Average Daily Truck Traffic)

AADT (Annual Average Daily Traffic)

Damage equivalent factor calibration. Parameters: Normalised freight volume to tons km/habitant

CIVIL526 – Steel structures, selected chapters


Prof. A. Nussbaumer

Reinforced and prestressed concrete bridges (EN 1992-2) - Reinforcement and steel fatigue curves

SIA263		EN 1992-1-1					
Type d'armature	$\Delta\sigma_{sd,fat}$ [N/mm ²] $(k_1 = 4)$ $(k_2 = 7)$	EN 1992-1-1 Category	Type d'armature	N*	k ₁	k ₂	Δσ _{Rsk,fat} pourr N* cycles [N/mm ²]
Acier d'armature passive Armatures de béton armé							
barres rectilignes Ø ≤ 20 mm	145		Barres droites et barres pliées				
barres rectilignes 20 mm < Ø ≤ 40 mm	120	A1		10 ⁶	5	9	162.5
étriers verticaux Ø ≤ 16 mm façonnés selon le chiffre 5.2.4	135						
– joints longitudinaux soudés							
– joints de croisement soudés (treillis, par exemple)	55	B1	Barres soudées et treillis soudés	10 ⁷	3	5	58.5
– liaison mécanique des barres		B2	Dispositifs de couplage	10 ⁷	3	5	35
Acier de précontrainte et unités de précontra	inte		Armatures de préc	contra	inte		
 unités de précontrainte monotorons sans adhérence unités de précontrainte à torons, monocouches, dans des gaines en matière synthétique 	175	А3	monotorons dans gaine en matière plastique	10 ⁶	5	9	185
– torons et barres pour la précontrainte par fils adhérents	145	A2	Précontrainte par pré-tension	10 ⁶	5	9	185
 unités de précontrainte à fils ou à torons, en plusieurs couches, avec ou sans adhérence, dans des gaines en matière synthétique 		С	armatures de précontrainte droites ou armatures de précontrainte courbes dans gaines en matière plastique	10 ⁶	5	10	150
unités de précontrainte à fils ou à torons, avec ou sans adhérence, dans des gaines en acier	95	D	armatures de précontrainte courbes dans gaines en acier	10 ⁶	5	7	120
ancrages, accouplements	70	E	dispositifs de couplage	10 ⁶	5	5	80

Equivalence coef. for reinforced concrete (EN 1992-2)

VÉRIFICATION EN TRAVÉE ET DES DALLES SOUS CHAUSSÉE

- 1) Coupling systems
 -) Prestressing rebars curved in steel duct
- Reinforced concrete steel: pretension (all elements) & post-tension (strands in plastic ducts, straight prestressing rebars)
- 4) Shear reinforcement
- a) Continuous beam
- b) Simple supported beam
- c) Slab under the road

A Critical length of the d'inf influence line